Journal of Organometallic Chemistry, 195 (1980) 203–206 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

METAL-BROMINE BOND-ENTHALPY CONTRIBUTIONS IN $M(\eta-C_5H_5)_2Br_2$ COMPLEXES (M = Mo, W)

J.C.G. CALADO, A.R. DIAS and J.A. MARTINHO SIMÕES

Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Lisboa (Portugal) (Received February 19th, 1980)

Summary

Reaction-solution calorimetric measurements of reactions of $M(\eta-C_5H_5)_2H_2$ (c) (M = Mo, W) with carbon tetrabromide in toluene led to bond-enthalpy contributions $\overline{D}(Mo-Br) = 242.0 \text{ kJ mol}^{-1}$ and $\overline{D}(W-Br) = 298.9 \text{ kJ mol}^{-1}$.

Introduction

In previous papers we reported bond-enthalpy contributions $\overline{D}(M-CH_3)$ [1], $\overline{D}(M-H)$ [2], and $\overline{D}(M-I)$ [3], respectively, in $M(\eta-C_5H_5)_2(CH_3)_2$, $M(\eta-C_5H_5)_2$ - H_2 , and $M(\eta-C_5H_5)_2I_2$ complexes (M = Mo, W). An obvious extension of this work involved the determination of M-Br bond-enthalpy contributions in $M(\eta-C_5H_5)_2Br_2$ (M = Mo, W).

A knowledge of metal—halogen bond energies will allow us to derive other $\overline{D}(Mo-L)$ and $\overline{D}(W-L)$ (L = alkyl, aryl, N, S, O, etc.) in those complexes, since we often obtain one of $M(\eta-C_5H_5)_2X_2$ (M = Mo, W; X = Cl, Br, I) compounds as the final product of the reactions commonly used in our thermochemical studies.

Experimental

Calorimeter

The reaction enthalpies and the solution heats were measured in the reaction-solution calorimeter previously described [3]. Some other important details of the experimental technique have also been noted elsewhere [2,3].

Compounds

The $M(\eta - C_5H_5)_2H_2$ (M = Mo, W) samples were prepared as described by Green et al. [4] and resublimed before use. B.D.H. carbon tetrabromide was also resublimed before use, and B.D.H. bromoform was purified [5] before

each experiment. The solvent for the reactions, B.D.H. Analar toluene, was used without any further treatment.

Reactions

The nature of the products of reaction 2 was demonstrated by Green et al. [4]. Using a Perkin-Elmer F 11 Gas Chromatograph we were able to identify the volatile product of reaction 1 as $CHBr_3$.

Results and discussion

The measured enthalpies of reactions 1 and 2 are shown in Tables 1 and 2 respectively

$$Mo(\eta - C_5H_5)_2H_2(c) + 2 \operatorname{CBr}_4(\operatorname{soln}) \to Mo(\eta - C_5H_5)_2\operatorname{Br}_2(c) + 2 \operatorname{CHBr}_3(\operatorname{soln})$$
(1)

$$W(\eta - C_5 H_5)_2 H_2(c) + 2 CBr_4(soln) \rightarrow W(\eta - C_5 H_5)_2 Br_2(c) + 2 CHBr_3(soln)$$
 (2)

The value obtained for the heat of solution of CBr_4 in toluene was $8.034 \pm 0.032 \text{ kJ mol}^{-1}$ (mean of five runs). No dilution heat effects were detected in the working molar range used (in the five runs CBr_4 mass varied from about 2.2 to 5.2 g). The heat of solution of stoichiometric amounts of $CHBr_3$ in solutions of CBr_4 in toluene was $-1.74 \pm 0.09 \text{ kJ mol}^{-1}$ (mean of five runs).

The values of $\Delta H_{f}^{o}[M(\eta-C_{5}H_{5})_{2}Br_{2}(c)]$ and $\overline{D}(M-H) - \overline{D}(M-Br)$, both for molybdenum and tungsten (Table 3) were obtained from the mean values of Tables 1 and 2 and the following auxiliary data (kJ mol⁻¹): $\Delta H_{f}^{o}[CBr_{4}(c)] =$ 18.8 [6]; $\Delta H_{f}^{o}[CHBr_{3}(l)] - 28.5$ [6]; $\Delta H_{f}^{o}[Mo(\eta-C_{5}H_{5})_{2}H_{2}(c)] = 210.3 \pm 5.8$ [2]; $\Delta H_{f}^{o}[W(\eta-C_{5}H_{5})_{2}H_{2}(c)] = 214.8 \pm 5.0$ [2]; $\Delta H_{f}^{o}[Br(g)] = 111.859 \pm$ 0.004 [7]; $\Delta H_{f}^{o}[H(g)] = 217.986 \pm 0.004$ [7]; $\Delta H_{s}^{o}[M(\eta-C_{5}H_{5})_{2}Br_{2}] - \Delta H_{s}^{o}$ -[$M(\eta-C_{5}H_{5})_{2}H_{2}] = 8.4 \pm 8.4$ (M = Mo, W; estimated values).

The major source of error in the values of Table 3 comes from the enthalpies of formation of carbon tetrabromide and bromoform. The quoted $\Delta H_{\rm f}^{\rm o}$ values seem to be the most reliable, but it is difficult assess their accuracy. For this reason we assigned to their difference uncertainty an interval of ±8.4 kJ mol⁻¹.

If we take $\overline{D}(Mo-H)$ and $\overline{D}(W-H)$ previously derived [2] we obtain $\overline{D}(Mo-Br) = 242.0 \text{ kJ mol}^{-1} \text{ and } \overline{D}(W-Br) = 298.9 \text{ kJ mol}^{-1}$. In Figure 1 these values are compared with other $\overline{D}(M-L)$ results so far derived. It may be

TABLE 1
REACTION OF $Mo(\eta-C_5H_5)_2H_2$ (c) WITH CBr_4 IN TOLUENE

Mo(η-C ₅ H ₅) ₂ H ₂ mass (g)	CBr ₄ mass (g)	е (JK ⁻¹)	Δ <i>T</i> (K)	$-\Delta H_{\rm r}$ (kJ mol ⁻¹)
0.26429	4.06654	250.40	1.4327	309.68
0.19710	2.98797	238.93	1.1584	320,38
0.21786	3.12996	227.77	1.3418	320.04
0.25009	3.66468	245.36	1.4220	318.29
0.23868	4.50658	249.62	1.3055	311.49

 ϵ = calibration constant; ΔT = measured temperature difference

$W(\eta-C_5H_5)_2H_2 \text{ mass}$ (g)	CBr ₄ mass (g)	е (JK ⁻¹)	Δ <i>T</i> (K)	$\frac{-\Delta H_{\rm r}}{(\rm kJ\ mol^{-1})}$
0.30226	4.77470	248.28	1.2443	323.04
0.21815	4.69530	251.39	0.8936	325.47
0.22039	3.30406	249.99	0.8901	319.12
0.26214	3.04881	245.43	1.0827	320.36

TABLE 2 REACTION OF $W(\eta$ -C₅H₅)₂H₂ (c) WITH CBr₄ IN TOLUENE

 ϵ = calibration constant; ΔT = measured temperature difference

TABLE 3

BOND-ENTHALPY CONTRIBUTION DIFFERENCES

М	ΔH_1^0 [M(η -C ₅ H ₅) ₂ Br ₂ (c)] (kJ mol ⁻¹)	D(M-H) - D(M-Br) (kJ mol ⁻¹)	
Mo	8.4 ± (18.3)	9.4 ± (9.7)	
W	6.9 ± (17.7)	6.4 ± (9.5)	

For explanation of uncertainty intervals see text

noticed that $\overline{D}(W-L) - \overline{D}(Mo-L)$ differences are relatively constant, varying between 44 and 62 kJ mol⁻¹ (mean 53 ± 7 kJ mol⁻¹). This is a common feature in metal—ligand bond energies. On the other hand we note that all values of Figure 1 were based either directly or indirectly on $\overline{D}(M-Cl)$ values which

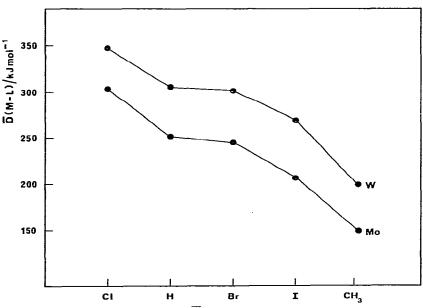


Fig. 1. Bond-enthalpy contributions $\overline{D}(M-L)$ in $M(\eta-C_5H_5)_2L_2$ compounds.

were assumed [8] to be equal to the mean bond dissociation enthalpies in $MoCl_6$ and WCl_6 . This assumption can be tested if we compare $\overline{D}(M-Br)$ herein derived with $\overline{D}(M-Br)$ in MBr_6 . Unfortunately the value is available only for tungsten hexabromide; it is 290 kJ mol⁻¹, not very far from 298.9 kJ mol⁻¹.

Acknowledgements

This work was partially financed by Junta Nacional de Investigação Científica e Tecnológica under contract number 22.78.66.

References

- 1 J.C.G. Calado, A.R. Dias, J.A. Martinho Simões and M.A.V. Ribeiro da Silva, J. Chem. Soc. Chem. Commun., (1978) 737.
- 2 J.C.G. Calado, A.R. Dias, J.A. Martinho Simões and M.A.V. Ribeiro da Silva, J. Organometal. Chem., 174 (1979) 77.
- 3 J.C.G. Calado, A.R. Dias, J.A. Martinho Simões and M.A.V. Ribeiro da Silva, Rev. Port. Quim., (1979) (in press).
- 4 M.L.H. Green and P.J. Knowles, J. Chem. Soc. Perkin I, (1973) 989.
- 5 D.D. Perrin, W.L.F. Armarego and D.R. Perrin, Purification of Laboratory Chemicals, Pergamon Press, New York, 1966.
- 6 D.D. Wagman, W.H. Evans, V.B. Parker, I. Halow, S.M. Bailey and R.H. Schumm, Nat. Bur. Stand. Tech. Notes, 1-4 (1969) Washington, D.C..
- 7 J.D. Cox, CATCH Tables, School of Molecular Sciences, University of Sussex, Brighton, 1972.
- 8 V.I. Tel'noi, I.B. Rabinovich, K.V. Kir'yanov and A.S. Smirnov, Dokl. Akad. Nauk S.S.S.R., 231 (1976) 903.